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1. INTRODUCTION

Although more than 40 years old the study of wave propagation in random media continues
to be active, enlivened further in the last decade by the experimental validation of
theoretical work that predicts the possibility of strong localization of light [1]. The focus of
recent theoretical studies has been the so-called coherent-potential approximation (CPA)
applied to wave propagation in a medium that possesses randomly placed, discrete
variations in its material properties. Applications governed by the Helmholtz equation have
been studied, e.g., quantum, electromagnetic, acoustical, or shallow water wave systems [2].
The present authors have also recently extended CPA theory to systems described by
a di!erent wave equation, namely the Euler}Bernoulli equation, which governs the motion
of #exural waves on thin plates [3]. It is also planned to apply the technique to the multiple
scattering of surface water waves by pack ice #oes in the Arctic and Antarctic marginal ice
zones, with each #oe being regarded as a thin elastic plate.

CPA uses a "ctitious &&e!ective medium'' to derive the transport properties of a speci"ed
random medium. In essence, a new reference frame can be found where multiple-scattering
e!ects vanish on average. The most recent models consider scattering from a &&coated
scatterer'', i.e., a single scatterer surrounded by some of the background medium, embedded
in an e!ective medium, which replaces the remainder of the random medium. The
properties of the e!ective medium, and hence of the original random medium in an
averaged sense, must be determined by use of an appropriate criterion [4}8].

To extend the methods used in Helmholtz systems to the Euler}Bernoulli case with
#exural waves, it is "rst necessary to "nd the scattering coe$cients for a coated scatterer.
This is done in a similar manner to those derived for electromagnetic wave scattering from
a coated sphere [9]. Accordingly, in this note we "nd the scattering properties of a single,
coated cylindrical anomaly located in a thin plate on which #exural waves propagate.

2. THE MODEL

We consider a thin elastic plate of #exural rigidity D, Poisson ratio l, density o and
thickness h in which a solitary coated cylindrical inhomogeneity exists. An incident plane
wave of wave number k"(ohu2/D)1@4 and radian frequency u impinges on this
inhomogeneity in the x direction. Its displacement can therefore be written as e*kr #04 h. The
coated region is composed of a cylindrical core, designated zone 1, with properties D
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occupying r(a surrounded by an annulus, designated zone 2, with properties D
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occupying a)r(b. Wave numbers within zones 1 and 2 are k
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and

k
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respectively. The con"guration is illustrated in Figure 1.
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Figure 1. Schematic diagram showing the problem being modelled.
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The plate is assumed to be continuous across the r"b boundary but three possible
boundary conditions are allowed at r"a; continuity, clamped or free. As described below,
the solution for the scattered "eld arising from an incoming plane wave is found in a similar
manner to that of Norris and Vemula [10].

By "rst expanding the incoming wave "eld e*kr #04 h"+=
n/0

e
n
in J

n
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n'0, e
0
"1, the total displacement can be expanded in terms of sums of various Bessel
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In this expression the factor e
n
in is introduced for convenience so as to match the series for

e*kr #04 h.

2.1. GENERAL PROBLEM

The general problem is de"ned such that w, Lw/Lr, M
r
and <

r
are continuous across the

two boundaries at r"a and r"b. Here M
r
and <

r
are, respectively, the radial bending

moment and shear, de"ned in cylindrical polar co-ordinates:
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Continuity is now applied for each value of n in the series to obtain the following system of
equations for the unknown coe$cients:
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In equation (3) the quantities S
X

and ¹
X
, where X denotes the type of Bessel function, are

de"ned as follows [10]:
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where D and l denote the appropriate #exural rigidity and the Poisson ratio for the zone
being considered, i denotes kb, k

1
a, k

2
a, or k

2
b, and the upper (lower) signs refer to

X"H (1), J, Y, (I, K) respectively.

2.2. FREE EDGE AT INNER ZONE: HOLE

In this case, the same conditions of continuity hold on r"b but M
r

and
<
r

are set to 0 on r"a. The 8]8 system (3) consequently reduces to the 6]6
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system
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2.3. CLAMPED EDGE AT INNER ZONE

Here the same conditions of continuity hold on r"b but now w and Lw/Lr are set to 0 on
r"a with M

r
and <

r
unconstrained. The 8]8 system (3) then reduces to a 6]6 system as

follows:
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3. RESULTS

It is straightforward to solve systems (3), (5) and (6) using MATLAB or another
application. In this work, after "rst conditioning the matrix, we use MATLAB to obtain the
values for the unknown coe$cients a

n
!h

n
.

Noting that our terms di!er by a factor of e
n
in from those of reference [10], the far"eld

scattered amplitude arising from a wave travelling in the x direction is
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a
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and in common with these authors we investigate the magnitude of this function along the
line h"n, i.e., the backscattered amplitude, normalized with respect to the square root of
the inner radius a, is given as
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Figure 2. Normalized backscattered amplitude for a plate with a hole surrounded by a coating of twice the
radius with the same thickness (solid curve) after [10], 0)9 times the thickness (dashed), 0)8 times the thickness
(dotted), and 0)7 times the thickness (chained).
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It is found that eight terms in the summations (1), (7) and (8) are su$cient to obtain a stable
solution.

In Figure 2 we have used equation (5) to plot expression (8) for the uncoated
hole, together with three other cases h

2
/h"0)9, 0)8, and 0)7. The uncoated solution,

drawn as a solid curve, is identical to that of reference [10], rising from zero at the origin to
a low peak before dropping back to zero again and then rising steadily with ka. In the

limit as kaP0 the scatterer is invisible to the very long waves and so D f (n) D/JaP0. On the

other extreme, D f (n) D/JaP1 as kaPR because the re#ection coe$cient of a free
edge is 1. Some "ne structure is evident on the curve. The other curves are exaggerated
versions of the uncoated case with more substantial #uctuations and a "rst minimum
that moves gradually left as the coating thickness becomes less. The #uctuations grow
markedly as the thickness of the coating is made less, deviating wildly from the mean trend
when it is thin enough to behave as a membrane where discrete resonances occur at certain
values of ka.

In Figure 3 the analogous curves are plotted for a rigid inclusion using equations (6) and
(8). Again the solid curve corresponding to no coating is identical to that of reference [10].

While the high wave number limit of D f (n) D/Ja is still 1 because the re#ection coe$cient

from a rigid boundary is 1, D f (n) D/JaPR as kaP0. Fluctuations about the mean trend
appear on the curve when a coating is included, again deviating most signi"cantly when the
coating deviates most in thickness from the rest of the plate. In contrast to the curves for
a hole (Figure 2), in this case the #uctuations become larger as the coating on the rigid
inclusion increases.

The "nal simulation is carried out for a plane #exural wave impinging on (a) an
unstepped and a stepped indentation, and (b) an unstepped and a stepped protrusion.
Results are shown in Figure 4, where the simpler unstepped situation is shown as a solid
curve in each case. In the upper plot (a) the solid curve is identical to that shown in reference
[10], with a sequence of maxima separated by troughs at which little or no energy is
backscattered. When a step is added the curve is similar but a little more disordered for
changes in ka. The magnitude of the far"eld backscattered response for the #exible



Figure 3. Normalized backscattered amplitude for a plate with a rigid inclusion surrounded by a coating of
twice the radius with the same thickness (solid curve) after [10], twice the thickness (dashed), three times the
thickness (dotted), and four times the thickness (chained).

Figure 4. Normalized backscattered amplitude for a plate with (a) an uncoated #exible inclusion with h
1
"1

2
h

(solid curve) after [10], and an identical inclusion surrounded by a coating with h
2
"3

4
h (dashed); (b) an uncoated

#exible inclusion with h
1
"2h (solid curve) and an identical inclusion surrounded by a coating with h

2
"1)5 h

(dashed).
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protrusion is shown in the lower plot (b). Each curve is qualitatively similar to those for the
inclusion but the minima are more widely separated along the ka axis.

4. CONCLUSIONS

The straightforward problem of a plane #exural wave interacting with a solitary, coated
cylindrical anomaly has been solved as a series expansion of Bessel functions. It is found
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that the results are consistent with those for the uncoated anomaly solved in reference [10],
which serves as a check on the calculations.

In general Figures 2}4 illustrate how much "ne structure can arise when rather small
changes in the thickness or other properties of the coating medium are present. In part, for
the cases presented this is due to the cubic dependence of the #exural rigidities D, D

1
and

D
2
on thickness, and more moderate changes between curves would occur due to variations

in Young's modulus, the Poisson ratio, or density. However, recall that the work reported
here is a necessary precursor to modelling multiply scattered #exural wave propagation
through a plate with many, randomly located, circular inclusions [3]. These may be holes,
rigid or #exible protrusions, or indentations. The background medium, i.e., its thickness h,
rigidity D and the Poisson ratio l, is not speci"ed; it is computed, for example by matching
energy densities [5]. Accordingly, the signi"cant variations with ka that we are typically
observing due to a change in the relative thicknesses h

2
/h and h

1
/h will be carried over into

results obtained using CPA.
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